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Learning by on-line gradient descent 

Michael Biehlt$ll and Holm Schwarzetl 
t CONNECT, The Niels Bohr InstitUte, Blegdamsvej 17.2100 Copenhagen 0, Denmark 
t Department of Theoretical Physics, Lund University. Solvegalan 14 A, 223 62 Lund, Sweden 

Received 4 July 1994 

Abstract. We study on-line gndient-descent leaming in multilayer nehvorks analytically and 
numerically. The training is based on randomly drawn inputs and their corresponding outputs as 
defined by a target mle. In the thermodynamic limit we derive deterministic differential equations 
for the order panmeten of the problem which allow an exact calculation of the evolution of 
the generalization errpr. Fmt we consider a single-layer perceptran with sigmoidal activation 
function learning a target rule defined by a network of the same archibchlre. For this model the 
generalization error decays exponentially with lhe number of haining examples if the learning 
nte is sufficiently small. However. if lhe learning nte is increased above a critical value, perfect 
learning is no longer possible. For architectures with hidden layers and fixed hidden-to-butput 
weights. such as the pxily and the commitlee machine, we find additional effects related to the 
existence of symmetries in these problems. 

1. Introduction 

Neural networks [ 1,2] can realize a classification scheme: they assign an output value to 
any possible input, defined by the architecture of the net, the activation functions of its 
units, and the actual set of network parameters or weights. 

The ability of such systems to learn a rule by choosing suitable weights has been studied 
successfully using statistical mechanics [3-51. Mostly, the training process is interpreted as 
a stochastic minimization of an energy function defined in weight space, which measures 
the performance of the student network on a given set of examples. The term generalization 
is used for the student’s ability to infer an unknown inputloutput relation from the examples 
and apply it to novel input data. 

Statistical physics provides the tools for investigating typical properties of the 
equilibrium solution to this optimization problem by performing the average over random 
example inputs in the limit of infinite dimensionality. 

The most thoroughly studied model in this context is the so-called simple perceptron, 
a single binary threshold unit which realizes a linearly separable classification [6,7]. 
Convergence of the training process can be guaranteed for deterministic learning algorithms 
which yield good generalization of a linearly separable rule [3-51. 

However, the learning scheme by far most commonly used in practice is gradient- 
descent learning in multilayered networks of continuous units. It is the basis of the well 
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known ‘back-propagation of error’ [S-II] and its modifications (see e.g. [I]). The objective 
function is very often simply the quadratic deviation of the student output from the correct 
one, summed over all training examples, 

In off-line or batch learning the evolution of the weights follows the direction of steepest 
descent in an energy landscape defined for a set of inputloutput pairs. In this paper, however, 
we consider learning by on-line gradient descent. The change of weights is given by 
the gradient of the error evaluated for only the latest in a sequence of examples. The 
performance on previous examples is not taken into account, and no explicit storage of a 
training set is necessary. Recently, the properties of on-line gradient-descent learning have 
been studied in the context of master equations for stochastic dynamics, which, in the limit 
of small learning rates, can be approximated by a Fokker-Planck equation (e.g. [12-15]). 

Here, we study the dynamics of on-line learning for specific models of two-layer 
networks in a well defined thermodynamic limit. This leads us to deterministic differential 
equations for the order parameters of the problem, which can be solved exactly. Assuming 
that all training inputs are drawn independently from the same distribution we study the 
generalization ability for different types of student networks and rules to be learned. 

We introduce on-line learning formally in the next section. Mainly for explaining the 
method of analysis, we discuss-as a first example-a single neuron with a continuous 
sigmoidal activation function. The unknown rule is represented by a single unit of the same 
type (the teacher) but with an unknown weight vector. Thus, the problem is learnable, and 
we study how the generalization error decreases to zero as more and more examples have 
been used for training. 

In our second example (section 4) the rule is still defined by a single neuron, but the 
student network consists of two hidden units with a fixed linear hidden-to-output relation. 
The coefficients of the latter determine whether the rule is indeed learnable for the actual 
student and various scenarios can be modelled. 

In section 5 we consider a student network with two hidden units, whose output is 
defined to be the product of their respective states. The rule to be learned is represented by 
a network of the same structure. 

A summary and discussion of the results is given in the last section where we conclude 
with an outlook on further applications of the method. 

M Biehl and H Schwarze 

2. The model 

Consider a student network with continuous output G ( J ,  C) where E is an N-dimensional 
input vector and J is the set of all variable weights in the net, 

The desired output T(<) is defined by a target rule, and the error 

& ( J , 5 ) = f [ G ( J , E ) - 5 ( 5 ) I 2  (1) 

measures the deviation of the student from the rule for a particular input .$. 
The generalization error of a student with weights J is defined as 

where (. . . )E  denotes the average over the distribution of inputs. In the following we consider 
independently drawn input vectors with uncorrelated random components of zero mean and 
unit variance. 

At each learning step p,  a new uncorrelated vector 5’ is presented, and the current 
weight vector J” is updated according to the gradient of a(JP, 5’) with respect to the 
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weights 
tl J”’ = J” - -VJE(JC,C’) 
N 

N [.(J”,S’) - r ( E ’ ) ] b 4 J ” , F P ) .  (3) 
- J P - -  tl - 

Here, 1 is the so-called learning rate, which has been scaled explicitly with the network 
size N. It controls the size of the steps made in the direction of steepest descent. Note, 
that the architecture of the student net and the activation functions of its units determine 
the actual form of the gradient term. 

For the specific examples considered in the following, it is possible to derive from (3) 
recursion relations for order parameters, which in turn determine the student’s properties 
completely in the thermodynamic limit N + 00. In the same limit we can interprete 
01 = p / N  as a continuous ‘time’ and solve the corresponding differential equations for the 
order parameters numerically. Thus, the evolution of the generalization ability in the above 
on-line learning process is obtained. 

3. A single unit with continuous output 

As a simple example of on-line gradient-descent learning we first consider a graded-response 
perceptron [16,17] whose output is given by 

o ( J ,  5) = g ( J  .5) (4) 

with a nonlinear, differentiable activation function g. A standard choice for g is 
g ( x )  = tanh(x) because of its property g’ (x )  = 1 - g2(x). However, in order to 
simplify the analytic treatment of our model, it is more convenient to use the function 
g(x) = erf(x/&) = J:x dt e-‘’IZ/z/Z;; instead. Both functions are very similar in shape 
and we do not expect our results to depend critically upon this choice. This network 
is trained from a stream of examples (5”. rp) whose outputs r, are defined by a target 
perceptron 

r” = r(<”)  = g(B . <”) (5) 
where E is the unknown teacher weight vector, and IlBll = 1. For this model the gradient 
descent learning rule (3) reads 

tl 
N (6) J’” = J’ + -MY,) - g(~,Jlg’(~p)C’ 

with g’(x)  = and the abbreviations xw = J’ . 5” and yF = B . C” for the 
internal fields (or net inputs) in the student and teacher network, respectively. Note that (6) 
formally resembles the Hebb-rule [18, 191 for the effective target outputs 

(7 ) 6” = MY’) - g(x , ) lg ’ (x , ) .  
In the back-propagation algorithm, these 6”’s play the role of the back-propagated errors. 

The generalization error for this model can be calculated in a straightforward manner 
and expressed a s  a function of the overlap of the student with the teacher weight vector 
R = J . B and the norm of the student weight vector Q = m. If the inputs are 
drawn independently from a common distribution with zero mean and unit variance, the 
average over inputs in (2)  leads to 

R 
c g ( R , Q ) =  -sin n 1 - - I (  - 1 + Qz Qz ) --  i s i n - ] (  Jm )+’. 6 (8) 



646 

In contrast to a simple threshold unit the generalization error of the graded-response unit  
explicitly depends on the length of the student vector. It vanishes only if the student vector 
is perfectly aligned with the teacher (R = Q) and has the same length (Q = 1). 

In order to calculate the generalization error (8) at time step fi  we need to compute the 
overlaps R@ = .?”I3 and [Q2]’ = JB JB. From the learning rule (6) using (7) we obtain 
the difference equations 

M Biekl and H Sckwarze 

These equations can be averaged over the current training input noting that the dependence 
on the inputs is only through the internal fields x p  and y,,. In the limit N + CO these are 
correlated Gaussian variables with zero mean and covariances ( x i )  = Q2, (y:) = 1 and 
(x ,  y,) = R. In the same limit, we can introduce a continuous ‘time’ or = @ I N  and rewrite 
(9) as differential equations 

dR 
dor dol 
-=7/ (8y)  -- 

where (. . .) denotes an average over the joint distribution of x and y, and where we have 
suppressed the index @. For the choice g ( x )  = erf(x/&) the averages in (IO) can be 
performed analytically, leading to 

~~ -- 

1 + 2( Q2 - R2) 
[sin-’ (m) + sin-’ ( 2(1+2QZ-R2) 

Qz 1 - R 
d a  H 1 + Q 2  & ( I +  e*)- R2 

Q2 

d[QZl 4 II 

4 vz  +fm 

From the numerical solution of these equations we finally obtain the time evolution of the 
generalization error (8). 

3.1. The role of the learning rate 

Figure I shows the evolution of the generalization error of the graded-response perceptron 
for different choices of the learning rate 17. 

For small learning rates the generalization error smoothly decreases with increasing ol 

and approaches the optimal value ts = 0. The speed of this approach can be controlled by 
varying 17. If q is chosen too large, the learning process slows down until a critical learning 
rate qc FS 4.06 is reached. For q t qc the generalization error does not decay to zero any 
longer but approaches a value E& + CO) > 0, We have performed simulations using a 
network with N = 100 weights and found a very good agreement with our analytic results 
(see figure I). 

We can investigate the asymptotic behaviour of the generalization error in greater detail 
by linearizing (11) around its fixed points given by dR/dol = d[Q2]/dol = 0. As can be 
easily verified, (11) has a fixed point at (R, Q) = (1. 1) for all values of q.  Linearizing 
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q=O.I  0 

q=5.0 + 

q=0.5  0 0.2 

0.15 

Figure 1. Generalization error of the graded-response 
percepmn for different leaning rates. The analytic 
results (full curves) ace compared to simulations 
(svmbols) for a network with N = 100 weiehts . _  - 
(standard ermr bars would be approximately the size 

" . of the svmbols). AI1 curves are for initial conditions 
U 4 a b  8 I U  R(0)  = b  and h(0) = 0.5 

Figure 2. Eigenvalues of the linesriled system 
(12) governing the asymptotic behaviour of the 
generalization ermr of the single graded response 
unit. The broken lines correspond to the imaginary 
P J ~ S  of the eigenvalues. The chain line represents 
212. 

around this point yields a system of linear differential equations for the deviations r = 1 - R 
and q = 1 - Q, given by 

with qc = m n  % 4.06. The eigenvalues of A are A1 = 4( f i / 3 ) (q /qc ) (q /qc  - 1) and 
A2 = - 2 f i q / ( 9 q c )  (see figure 2). Therefore, for subcritical values of 7 the parameters 
R and Q approach their optimal value exponentially fast, with r .q  a e"(")=, where 
A(q)  = max(Al, A*). Note, that as q+ qc the relaxation time - l / A l  diverges like (vc-q)- '  
(critical slowing down). For q > qc, one of the two eigenvalues becomes positive and 
(R, Q) = (1, 1) is not an attractive fixed point any Longer. However, in this regime we can 
numerically find a second fixed point of (11) with R ,  Q # 1. Hence, perfect learning is not 
possible and cg(a  + 00) > 0. 

The eigenvalues of the linearized system governing the approach to this suboptimal 
fixed point are also shown in figure 2. Note. that for 4.45 5 q 5 5.05 the eigenvalues 
have imaginary parts corresponding to oscillations around the fixed points. However, these 
oscillations are strongly damped due to the larger real parts of the eigenvalues. 

If the learning rate is greater than q d  = n/sin-' (4) % 9.24, no fixed point exists and 
R ,  Q + 00 as 01 --t 00. 

In order to find the learning rate qopt. which yields the fastest asymptotic decay of the 
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generalization error, we expand (8) to second order in r and q 

M Biehi and H Schwane 

Since the eigenvector corresponding to the eigenvalue A2 is (1,l)’. this mode cannot 
contribute to the asymptotic behaviour of the linear combination (r - q).  Hence, for small 
q ,  (r - q )  decays faster than r and q,  and the behaviour of eS depends on the actual order 
of ( r  - q )  compared to the quadratic terms. If, for given q .  q2 is larger than ( r  - q ) ,  the 
generalization error decays proportional to ezizu, while we have &g a ,*Ia  if (r - q )  is 
larger than q2.  This change of the asymptotic behaviour happens at qopt = 2qc/3 2.704. 
where AI and 2h2 coincide (see figure 2). Therefore, the fastest asymptotic decay of eS 
is achieved for qopt. However, it  should be noted that this discussion only holds for the 
asymptotic behaviour. The initial decay of the generalization error is faster for values of 
q different from qapt, and an on-line adjustment of the learning rate would be desirable in 
order to optimize the network behaviour [201. 

Even though learning a simple perceptron with another perceptron is a learnable task, 
this simple example illustrates the importance of a proper choice of the learning rate in an 
on-line gradient-descent scheme. The convergence becomes slow if the learning rate differs 
from the optimal one, and a large learning rate causes a failure to converge to the optimal 
solution. This result is in agreement with the behaviour observed by many authors for the 
back-propagation algorithm. Furthermore, the step-size dependence of off-line gradient- 
descent minimization schemes is well known. In one dimension Newton’s method utilizes 
the fact that the optimal step size for an iterative minimization of a quadratic cost function by 
gradient descent is l/(Z@), where @ is the second derivative of the cost function. If the step 
size is larger than twice this value the procedure does not converge. In higher dimensions, 
minimizing a quadratic error surface corresponds to batch learning in a single linear unit. 
In this case, the largest step size which guarantees convergence is the inverse of the largest 
eigenvalue of the Hessian (see e.g. [22,23]).  Note, however, that these considerations do 
not directly apply to on-line leaming, where the gradient of the training error is calculated 
with respect to one example only. 

4. The soft-committee machine 

After having illustrated the basic features of on-line gradientdescent learning in a simple 
perceptron we now turn to networks with hidden units. As an example for this situation we 
consider a fully connected two-layer network with two hidden units of the type described 
above and with the hidden-to-output weights fixed to +I .  The overall output of this machine 
is given by 

~ ( J I .  J2 .  E )  = g , [g (J i  . E )  + g ( J 2  .Cl] (14) 

where we choose a linear output unit with g,(x) = px,  ,9 > 0. Hence, the overall output 
is proportional to the average ‘decision’ of the hidden units. This network is trained to 
implement a simple task defined by a teacher perceptron as in (5). Note that this is a 
learnable task (i.e. E:’ = 0) only for the choices = 4 and p = 1. and an unrealizable 
rule for all other values of p .  For p = $ the optimal generalization error is achieved for 
a symmetric student network with J,  = Jt = B, while for p = 1 the optimal student is 
a specialized one with J1 = B and 11J211 = 0 or vice versa. Therefore, this simple model 
includes a variety of possible learning scenarios. 
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Similar to the single unit, the generalization error for this model can be expressed in 
and C = J1 . JZ (1 = 1,Z). We terms of the relevant overlaps Rr = Ji . B, Ql = 

obtain 

Again, from the learning rule (3) we obtain difference equations for the relevant parameters, 
which in the limit N + 03 can be written as the differential equations 

where the averages are over the joint distribution of the X I ' S  and yf's, and with 8, = 
[g(yI) - g ( x f ) ]  g'(x,) analogous to (7) for the individual hidden units. All the averages can 
be performed analytically (see appendix A), and from the numerical solution of the resulting 
set of five coupled differential equations we get the time evolution of the generalization error 
(15) and its asymptotic value. 

First we will discuss the case /3 = 1. It can easily be seen from (A4)-(A6) that the 
network will always evolve symmetrically with RI = Rz and Ql = Qz if it is started 
from symmetric initial conditions. Only if the initial conditions break this symmetry, can 
the system leave the symmetric subspace and approach the optimal solution. Figure 3 
shows the evolution of the student-teacher overlaps R1.z for two different choices of initial 
conditions. 

Initially, the overlaps rapidly approach values close to a fixed point which is stable 
within the symmetric subspace. However, due to the non-symmetric initial conditions 
the system does not evolve within this subspace, and eventually the repulsive mode takes 
over. For large values of a,  the system approaches the optimal fixed point which breaks 

d 0.5 

0.4 

0.3 

0.2 

0. I 

0 
0 50 ID0 go 200 250 3w 

Figum 3. Evolution of the parameters RI and R2 
of the soff-commitlee machine wilh ,8 = 1 and 
leaming rate q = 1. The full curves represents 
the solution of the differential equations for non- 
symmetric initial conditions (RI = Rz = QI = 
C = 0 and Qa = 0.1). The symbols show the 
results of simulations For different system sizes. 
The dotted curves correspond to &e analytic 
solution for he initial conditions RI = Rz = 
QI = C = O  and Qz = 0.01. 
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the symmetry between hidden units. This delayed repulsion is due to the fact that the 
corresponding positive transverse eigenvalue of the linearized system is very small compared 
to the absolute values of the negative longitudinal ones, As can be seen from figure 3, the 
number of learning steps necessary to escape from the symmetric fixed point is very sensitive 
to the degree of asymmetry in the initial conditions. For the same reason we find strong 
finite-size effects in our simulations in the region, where the specialization of hidden units 

In order to study the q- and @-dependence of the network behaviour we have numerically 
looked for stationary solutions of the differential equations and computed the eigenvalues 
of the corresponding linearized system; the results are shown in figure 4 .  

For fixed @ = 1 (figure 4(a ) )  and small q c qc * 1.89 the network behaviour is 
qualitatively similar to the situation at q = 1. The initial generalization behaviour is 
dominated by a repulsive symmetric fixed point while for large training sets the network 
approaches the optimal non-symmetric solution. A careful numerical evaluation of the fixed- 
point equations shows the existence of a further symmetric fixed point. However, this fixed 
point is repulsive even within the symmetric subspace and does not influence the network 
performance. As in the single unit there is a critical learning rate qc 1.89, above which 
the optimal fixed point becomes unstable and the network approaches a suboptimal but still 
non-symmetric solution. If the learning rate is increased above qr n 2.17, the network 
does not realize the necessity of a specialization any longer, and the symmetric fixed point 
becomes the stable one. A further increase of the learning rate above q d  3.29 causes 
the norms of the student weight vectors to diverge, and the algorithm even fails to find an 
approximate solution. Finally we note, that in contrast to the single unit, the speed of both 
the escape from the symmetric region and the approach to the optimal solution below qc are 
influenced by the choice of the learning rate. Therefore. tuning the learning rate to obtain 
the optimal behaviour is a more difficult task than in the single unit. 

Figure 4(b) shows the asymptotic properties of the soft committee as a function of the 
gain parameter @ in the linear output unit with r~ = 1 fixed. For small @ < 0.5 the network 
approaches a stable symmetric fixed point. The corresponding residual error depends on 
the choice of @: for @ = $ the rule is realizable for the student network (E& -+ 00) = 0) 

occurs. 
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while it is unrealizable for B e Again, we find a second symmetric fixed point, which is 
repulsive for all values of ,3 and, in general, does not influence the dynamical evolution. Its 
generalization error is very close to that of the stable fixed point, closer than the resolution 
in figure 4(b) .  In the region 1 < B < e 1.44 the fixed-point structure is again similar 
to the one described for q = ,9 = 1: a stable non-symmetric fixed point with RI  # Rz and 
a pair of repulsive symmetric fixed points, one of which is attractive within the symmetric 
subspace and influences the initial behaviour of the training process for a wide range of 
initial conditions. The residual error vanishes only at B = 1 and sharply increases even for 
a slightly mismatched gain parameter. For large values of ,3 we find a behaviour similar to 
the largeq regime: in the region 1.44 5 B < jl,j e 1.59 one of the symmetric fixed points 
becomes the stable one and for f3 > ,9d the norm of the student vector diverges while R 
remains bounded. 

5. The soft-parity machine 

Here we again consider a student network with two hidden units, but with non-overlapping 
receptive fields: each of the units is connected to only half of the input nodes. The output 
of the net is taken to be the product of their respective states, as an example for a nonlinear 
hidden-to-output relation: 

u ( J I , J z . E )  = g ( J 1  .El)g(Jz . tz)  with g ( x ) = e r f ( x / h .  (17) 
Here Jl.z E BN, and we consider the total input to be 2N-dimensional, consisting of 
uncorrelated N-dimensional vectors El,z .  Thus, the normalization of the vectors and the 
definition of overlaps are formally the same as in the above cases. 

The error is calculated with respect to a teacher of the same structure, with unknown, 
normalized B1.2. The generalization error is determined through the order parameters 
Rl = BI JI and Ql = a as 

(18) 

Note, that no cross overlaps of the type J I  . BZ or JI . JZ enter, because the inputs to the 
hidden units are taken to be drawn independently. 

We consider the learning procedure 

(19) 
J ; + ’ = J ’ + - - S ’  rl p 1 = 1 , 2  

I l t l  

where 81.z = [s(E”) - u(Jr3  J:)lg’(x$) &cl )  and x t z  = JtZ .E&. 
In continuous time or = @/N one arrives at the system of differential equations 

The averages are over the joint density of all internal fields, which in this case factorizes: 
P(x1 , xa ,  y ~ ,  yz) = P ( x I ,  y1) P(XZ,  yz) .  The full form of (20) can be found in the appendix. 
Note however, that in general, the average (8:) cannot be performed analytically. 

The differential equations conserve a physical symmetry of the type RI = RZ and 
Q l  = Qz between the hidden units. In fact, it can be shown analytically, that-in the 
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subspace of Ql = Qz-the system is stable against small perturbations from RI = R2. 
Simulations of the algorithm for finite N also indicate that this symmetry is favoured for 
general initial conditions and no non-symmetric fixed points of (20) were found numerically. 
Therefore, we restrict the following discussion to the simplified two-dimensional system of 
differential equations where RI  = RZ = R and QI = QZ = Q in (BI) and (BZ). 

Due to the fact that a ( 5 1 ,  52, s) = ~(-51, -52. E )  for this type of network, the actual 
sign of the overlap R for any fixed point ( R ,  Q) is determined by tbe initial conditions and 
is otherwise irrelevant. Note, that dR/do! is an odd function of R, whereas dQ/da is even. 
For simplicity we consider only non-negative values of R in the following. 

From (19) it is clear already that 51 = JZ = 0, in. R = Q = 0, is a steady state of the 
learning procedure. Furthermore, if the student starts from any initial configuration having 
zero overlap with the teacher weights, it will never leave the subspace with R = 0. For 
r j  > rjc the corresponding asymptotic value of Q diverges. 

Thus, apriori knowledge is required for successful learning in this model, Any non-zero 
initial overlap will eventually yield non-hivial generalization, because R = 0 is repulsive. 
A similar effect was recently observed in on-line unsupervised learning [21]. 

The second obvious fixed point is the ‘perfect student’ R = Q = 1. A linearization 
of the system around this point reveals a behaviour qualitatively very similar to the 
case of a single unit, see section 3. Provided the learning rate is sufficiently small, 
r j  < rjc 6.165, the system approaches R = Q = 1 exponentially fast in or. The decay is 
given asymptotically by 

R,  Q a eA((R)a where A($ = max(Al, Az) with 
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A1 % -0.2450 r j  + 0.03975 r j z  and hz % -0.7461 q . (21) 

The evolution of the generalization error for fixed q and different initial conditions is shown 
in figure 5. Note again, that eg depends explicitly on Q. hence the or-dependence of the 
generalization error even for R = 0. 

Learning slows down critically as r j  + rjc. For even larger learning rates the 
first eigenvalue is positive, therefore (1, I) becomes unstable and a new attractive fixed 
point appears with a corresponding + CO) > 0. Like for the single unit, for 
r j  > q,j = n/ sin-’ ( f )  no fixed point exists and both Q(or 4 CO) and R(a + CO) diverge. 

In the vicinity of R = Q = 1 we find for the generalization error 

R(O)= 0.0 - 
R(O)= 0.1 
R(O)= 0.5 

R(O)= 0.0 - 
R(O)= 0.1 
R(O)= 0.5 

w 

0.1 

Figure 5. Evolution of the generalization error of the 
sofl-patity machine for fixed ‘I = 3 and different initial 
overlaps (Q(0) = I for all CUN~S). Simulations were 

0 2 4 6 8 10 12 14 16 18 20 NW. Standard error bars would be smaller than the 

0.05 

0 

... 
done with N = 200, averaged over LOO independent 

U size of the symbols. 
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where r = 1 - R and q = 1 - Q. Again, the eigenvalue hz corresponds to a decay along 
r = q,  and this implies, like for the single unit, that the relaxation of the generalization 
error is according to 

In the sense of the discussion in section 3 the optimal learning rate would be defined by 
the condition ht = 2h2, yielding qOpl E. 2.411, 

6. Summary and outlook 

We have studied an exactly solvable model of on-line gradient-descent learning in multilayer 
networks. For different studentkeacher pairs and randomly drawn training examples we 
have investigated the generalization performance of the on-line learners. Averaging over 
the distribution of inputs in the thermodynamic limit allows us to write down deterministic 
differential equations for the order parameters, which can be solved numerically. For a 
single graded-response unit learning a realizable rule with sufficiently small learning rates 
we find an exponential decay of the generalization error. However, if the learning rate is 
increased above a critical value, the network approaches a suboptimal fixed point with a 
non-vanishing generalization error instead. Not surprisingly, this behaviour is similar to that 
of a linear unit [22,23], because in the vicinity of the optimal solution B the error surface 
is to leading order quadratic in ( B  - J )  as in the linear case. 

For both the soft-committee machine learning a rule defined by a single unit and the 
soft-parity machine learning from another soft-parity machine the asymptotic approach to 
the fixed point is exponentially fast as in the case of the single unit. Again, we find 
critical values of the learning rate, above which perfect learning becomes impossible. In 
contrast to the single unit, the two-layer systems show additional features related to their 
internal symmebies. The output of the committee machine is invariant under permutations 
of the hidden-unit weight vectors. Correspondingly, we find fixed points of the differential 
equations for the order parameters that also obey this symmetry and strongly influence the 
small-ol behaviour of the learning dynamics. Even though these fixed points are unstable, 
the repulsion from the symmetric subspace is slow compared to the attraction within the 
symmetric subspace. A similar effect of delayed learning was recently observed in the 
equilibrium behaviour of off-line Gibbs learning in l a se  committee machines with binary 
threshold units [24,25]. In this model perfect generalization required a specialization of 
hidden units. However, for small training sets the equilibrium solution was a committee- 
symmebic one with poor generalization ability. Only for sufficiently large training sets 
could the network realize the necessity of breaking this symmetry. 

The output of the soft-parity machine is invariant under a simultaneous change of sign 
of both weight vectors. The corresponding fixed point of the differential equations is 
R = Q = 0, a student that has not inferred any information about the rule. Again, a similar 
situation of ‘memorization without generalization’ was observed in the off-line equilibrium 
behaviour of the corresponding model with binary units [26,27]: for small training sets the 
existence of a local minimum of the free energy with R = 0 causes the student network to 
fail completely. 

It would be desirable to gain further understanding of these similarities between off- and 
on-line learning, also in order to understand to what extent results from statistical mechanics 
carry over to stochastic on-line gradient-descent strategies, whose equilibrium distributions 
are not of the Gibbs type [15]. 
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Recently, Kabashima studied on-line learning in a parity machine with binary units 
according to the so-called least-action algorithm [28]. There, a loss of generalization is 
observed when only noisy training outputs are available. It would be interesting to study how 
such noisy example outputs or inputs influence the outcome of our model, in particular with 
respect to the dependence of the asymptotic behaviour upon the learning rate. Furthermore 
ow studies should be extended to a more detailed analysis of situations in which the rule 
is unlearnable for the student. 

It should also be possible to apply the method to the minimization of more sophisticated 
cost functions, such as entropic or well formed error measures [I], as well as modified 
learning schemes, e.g. [291. 
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Appendix A. The soft-committee machine 

In the limit N -+ a0 the average over internal fields in (16) is an average over the distribution 
P ( X I , X Z ,  y) = det(C)-'/2(2rr)-3/2 e x p [ - $ ( x ~ , x z , y ) c '  ( x ~ , x z , y ) ~ ]  (AI) 
with the covariance matrix 

After a lengthy but straightforward calculation using g ( x )  = e r f ( x / d ) ,  g'(x)  = 
@e-x'/z and the identity 
+m 

2ab 
erf (ax)  erf(bx) = - sin - ' ( J ( I + 2 a z ) ( 1 + 2 b 2 )  

II 
' 

-m 
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C O ? + A l  

(1 + AI) (1 + Az) - A’ 
(1 + AI) (1 + A,) - A’ + A 

C 

+ ( I  U 2) (A61 

where we have used the abbreviations 

A = Q:Qi - C’ A = (1 + Q:) (1 + Q:) - C’ 

= Q: - R: 
A~ = Q; - R,Z 

= (1 + ZQ:) (1 + Q;) - Z C ~  

= (1 + Q:) (1 +zQ:) - 2 ~ ’ .  

(A7) 

The equations for dRz/da and d[Qi]/dcf are similar to (A4) and (A% respectively, just 
with the indices 1 and 2 interchanged. 

and correspondingly for R? and Qz. 

for the single unit (section 3). 
Averages are over P ( x 1 ,  y ~ ) P ( x z ,  y2). where P(x, ,  y l )  is identical with the distribution 
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In the simplified case of physical symmetry, RI = R2 = R and Ql = Q2 = Q, the 
linearization around the fixed point (R = 1, Q = I )  is of the form 

where = 1 - R and 4 = 1 - 8. The matrix A is given by 

with 
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